Homework 11

follows from voltage division that $\mathbf{V}_{L} = -(-j10/j30) \times 6 = 2 \text{ V}.$

P10.1.30 Determine I_{SRC} in Figure P10.1.30.

Solution: The voltages and currents of the ideal autotransformer may be assigned as shown. From KVL in the mesh involving *R*, *C*, and the autotransformer, $2I_2 + 2V_1 + V_1 - (-j2I_2) = 0$, or $3V_1 = -2(1 + j)I_2$. From KVL in the upper mesh, $2I_2 + 2V_1 = 1 \angle 0^\circ$. Substituting for V_1 , $2I_2 - (4/3)(1 + j)I_2 = 1 \angle 0^\circ = (2/3)(1 - j2)I_2$, which gives, $I_2 = \frac{1.5}{1 - j2}$. Since $I_{SRC} = 3I_2$,

$$I_{\text{src}} = \frac{4.5}{1-j2} = 0.9(1+j2) = 2.01 \angle 63.4^{\circ}$$
 A.

P10.1.40 Derive TEC looking into terminal 'ab' in Figure P10.1.40.

Solution: $V_2 = j50I_1$, $V_{Th} = -j40(-2I_1)$, $50 = 50I_1 + 0.5V_2 - 2V_{Th}$. Substituting for I_1 and V_2 in terms of V_{Th} gives: $50 = -j\frac{5}{8}V_{Th} +$

$$\frac{5}{16} \mathbf{V}_{Th} - 2\mathbf{V}_{Th}; \text{ or, } 50 = -\left(\frac{27}{16} + j\frac{5}{8}\right) \mathbf{V}_{Th},$$

or, $V_{Th} = -26.1 + j9.65$ V.

Let a test voltage source be applied between terminals 'ab'. The *j*100 Ω impedance reflected to the primary side

is
$$j25 \ \Omega$$
. $\mathbf{I_1} = \frac{2\mathbf{V_T}}{50 + j25}$; $\mathbf{I_T} = \mathbf{I_C} + 502$
 $2\mathbf{I_1} = -\mathbf{V_T} \left(\frac{4}{50 + j25} - \frac{1}{j40}\right)$. It

follows that $\frac{\mathbf{V_T}}{\mathbf{I_T}} = \left(\frac{1}{\frac{4}{50+j25} - \frac{1}{j40}}\right) =$

$$\left(\frac{j40(50+j25)}{-50+j135}\right) = 15.44 + j1.69 \ \Omega.$$

P10.2.5 Determine *L_{eq}* in Figure P10.2.5.

Solution: It is seen from the current relations for the ideal transformer that $I/2 = (I_T - I)$, or $I = 2I_T/3$. From KVL for each of the two branches: $j\omega 6I + j\omega 4.5(I_T - I) + V = V_T$ and $j\omega 12(I_T - I) + j\omega 4.5I - 2V = V_T$ Eliminating V and I between these equations

gives $j\omega 6\mathbf{I}_{T} = \mathbf{V}_{T}$, so that $L_{eq} = \mathbf{V}_{T}/j\omega \mathbf{I} = 6$ H.

P10.2.7 Determine a in Figure P10.2.7 so that $Y_{in} = 0$, assuming $\omega = 1$ Mrad/s

Solution: The two coupled coils have $L_{eq} =$

 $6 + 4 - 2 \times 3 = 4 \mu H$, and an impedance of $j\omega L_{eq} = j4 \ \Omega$; $1/j\omega C = 1/(j10^6 \times 0.25 \times 10^{-6})$ $= -j4 \Omega.$

When a test source V_T is applied, the test current I_T should be zero. The voltage across $j\omega L_{eq}$ is $(\mathbf{V}_{T} - a\mathbf{V}_{T})$, so that $\mathbf{I} = (1 - a)\mathbf{V}_{T}/(j4)$. From KCL at the upper node, al = I + $V_T/(-j4)$, or $I = V_T/[(j4)(1 - a)]$. Equating the two expressions of I: $\frac{1-a}{j4} = \frac{1}{j4(1-a)}$, or,

 $(1-a)^2 = 1$, $a = 1 \pm 1$, or a = 2.

