Homework 11

P10.1.3 Determine Io in Figure P10.1.3.
Solution: A current of $j 5 \mathrm{~A}$ leaves the marked terminal on the primary side. It follows that a positive current of $j 10 \mathrm{~A}$ leaves the unmarked terminal on the secondary side. From current division, $\mathbf{I}_{0}=$ $j 10(-j 2 /(-j 2+j 4)=-j 10 \mathrm{~A}$.

Figure P10.1.3

Figure P10.1.3-1

P10.1.11 Determine V_{o} in Figure P 10.1 .11.
Solution: The problem will be solved by applying KVL and KCL starting from the output and working backwards toward the source. The
current through the 20Ω resistor at the output is $\mathrm{V}_{\mathrm{o}} / 20 \mathrm{~A}$.
Denoting the secondary current of the transformer on the RHS by I, the primary current is $\mathbf{4 I}$, the current in the upper 20Ω resistor is

$$
1-20
$$

$\left(V_{0} / 20-I\right)$, and the voltage across this resistor is $\left(V_{0}-20 I\right)$. The secondary voltage of the transformer on the LHS is ($32 \mathbf{I}+\mathrm{V}_{\mathrm{o}} / 4$) of the polarity indicated. The primary voltage of this transformer is $\left(16 I+V_{0} / 8\right)$ and the primary current is $8 \mathbf{I}$, both of the polarity indicated. The current in the 8Ω resistor is $\left(V_{o} / 20-9 I\right)$. From KVL around the mesh on the LHS is: $120=\left(2 V_{0} / 5-72 \mathrm{I}-\mathrm{V}_{0} / 8-16 \mathrm{I}\right)=\left(11 \mathrm{~V}_{\mathrm{o}} / 40-\right.$ 88I). KVL around the primary voltage, the 20Ω resistor and the output is: $(-16 \mathbf{I}-$ $V_{0} / 8-V_{0}+20 I-V_{0}=0$, which gives $I=17 V_{0} / 32$. Substituting for I gives $V_{0}=$ $-4800 / 1859=2.58 \angle 180^{\circ}$.

P10.1.20 Determine V_{L} in Figure P10.1.20.

Solution: TEC as seen from the primary winding will be derived.

It is seen that $\mathbf{V}_{\mathbf{x}}=0.1 \mathbf{V}_{\mathbf{x}}(5+j 5)$,
Figure P 10.1.20
which makes $+V_{x} \quad-$
$\mathbf{V}_{\mathbf{X}}=0$ and \mathbf{V}_{Th}
$=3 \mathrm{~V}$. On
short
circuit,, $\mathbf{V}=3$
V , so that $0.1 \mathrm{~V}_{\mathrm{x}}$
Figure P10.1.20-1

Figure P10.1.20-2
$=0.3 \mathrm{~V}$; from
KCL, 3/(5 +
j5) $=0.3+$
Isc, which
$\mathrm{I}_{\mathrm{sc}}=$

Figure P10.1.20-3 $-j 0.3 \mathrm{~A}$, so that $Z_{T h}=$
$3 /(-j 0.3)=j 10 \Omega$. TEC becomes as shown. Reflecting this to the secondary, it follows from voltage division that $\mathbf{V}_{\mathbf{L}}=-(-j 10 / j 30) \times 6=2 \mathrm{~V}$.

P10.1.30 Determine $\mathbf{I}_{\text {sRc }}$ in Figure P10.1.30.
Solution: The voltages and currents of the ideal autotransformer may be assigned as shown. From KVL in the mesh involving R, C, and the autotransformer, $2 \mathbf{I}_{2}+2 \mathbf{V}_{1}+\mathbf{V}_{1}-\left(-j 2 \mathbf{I}_{2}\right)=0$, or $3 \mathbf{V}_{\mathbf{1}}=$ $-2(1+\rho) \mathbf{I}_{\mathbf{2}}$. From KVL in the upper mesh, $2 \mathbf{I}_{\mathbf{2}}+2 \mathbf{V}_{\mathbf{1}}=$ $1 \angle 0^{\circ}$. Substituting for $\mathbf{V}_{\mathbf{1}}, 2 \mathbf{I}_{\mathbf{2}}-(4 / 3)(1+j) \mathbf{l}_{\mathbf{2}}=1 \angle 0^{\circ}=$ $(2 / 3)(1-j 2) \mathbf{I}_{2}$, which gives, $\mathbf{I}_{\mathbf{2}}=\frac{1.5}{1-j 2}$. Since $\mathbf{I}_{\mathbf{S R C}}=3 \mathbf{I}_{\mathbf{2}}$,

Figure P10.1.30

Figure P10.1.30-1

P10.1.36 Derive TEC looking into terminals 'ab' in Figure P10.1.36.
Solution: On open circuit, the equations for the transformer are:
$\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}=\frac{300+200}{200}=2.5 ; \mathbf{V}_{2}=10-50 \mathrm{I}_{2}$
$\mathbf{I}_{2}=\frac{V_{1}}{-j 8}+\mathbf{I}_{1} ; 300 \mathbf{I}_{2}+200 \mathbf{I}_{1}=0$.
Substituting $\mathbf{V}_{1}, \mathbf{I}_{\mathbf{2}}=\frac{\mathbf{V}_{\mathbf{2}}}{-j 8}+\mathbf{I}_{\mathbf{1}}$.
Substituting $\mathbf{I}_{1}, \mathbf{I}_{\mathbf{2}}=\frac{\mathbf{V}_{2}}{-j 8}-\frac{\mathbf{3}}{\mathbf{2}} \mathbf{I}_{\mathbf{2}}$, or $50 \mathbf{I}_{\mathbf{2}}=\mathbf{V}_{2}$.
Substituting $50 \mathbf{I}_{\mathbf{2}}, \mathbf{V}_{\mathbf{2}}=10-\mathbf{N}_{\mathbf{2}}$, or
$\mathbf{V}_{\mathbf{2}}=\frac{10}{1+j}=5(1-j) \mathrm{V}$, and $\mathbf{V}_{\mathrm{Th}}=2 \mathbf{V}_{\mathbf{2}}=$
10(1-j)V.
When a test source $\mathbf{V}_{\boldsymbol{T}}$ is applied, with the independent source set t zero, $\mathbf{V}_{\mathbf{T}}=2 \mathbf{V}_{\mathbf{2}}=$ $100 \mathbf{I}_{2} . \mathbf{V}_{\mathbf{1}}=\mathbf{V}_{\mathrm{T}} / 5=-j 8 \mathbf{l}_{1}$, or $\mathbf{I}_{\mathbf{1}}=\mathbf{N}_{\mathrm{T}} / 40$. The mmf equation is: $500 \mathrm{I}_{\mathrm{T}}+300\left(\mathrm{I}_{\mathbf{T}}-\mathrm{I}_{\mathbf{2}}\right)$ $+200\left(I_{T}-I_{2}-I_{1}\right)=0$, or $10 I_{T}-5 I_{2}-$ $2 \mathbf{I}_{1}=0$, Substituting \mathbf{I}_{1} and $\mathbf{I}_{\mathbf{2}}$ in terms of $\mathbf{V}_{\mathbf{T}}$ gives:
$\frac{\mathbf{V}_{\mathbf{T}}}{\mathbf{I}_{\mathbf{T}}}=\frac{200}{1+j}=100(1-j) \Omega=Z_{\text {Th }}$.

Figure P10.1.36-1

Figure P10.1.36-2

P10.1.40 Derive TEC looking into terminal 'ab' in Figure P10.1.40.

Solution: $\mathbf{V}_{\mathbf{2}}=j 50 \mathbf{l}_{1}, \mathbf{V}_{\text {Th }}=-j 40\left(-2 \mathbf{l}_{1}\right), 50=50 \mathbf{l}_{1}+$ $0.5 \mathrm{~V}_{\mathbf{2}}-2 \mathbf{V}_{\mathrm{Th}}$. Substituting for \mathbf{I}_{1} and \mathbf{V}_{2} in terms of $\mathbf{V}_{\text {Th }}$ gives: $50=-j \frac{5}{8} \mathbf{V}_{\text {Th }}+$ $\frac{5}{16} \mathbf{V}_{\mathrm{Th}}-2 \mathbf{V}_{\mathrm{Th}} ;$ or, $50=-\left(\frac{27}{16}+j \frac{5}{8}\right) \mathbf{V}_{\mathrm{Th}}$, or, $\mathbf{V}_{\mathbf{T h}}=-26.1+j 9.65 \mathrm{~V}$.

Let a test voltage source be applied between terminals 'ab'. The $j 100 \Omega$ impedance reflected to the primary side is $j 25 \Omega . \mathbf{I}_{\mathbf{1}}=\frac{2 \mathbf{V}_{\mathbf{T}}}{50+j 25} ; \mathbf{I}_{\mathbf{T}}=\mathbf{I}_{\mathbf{C}}+$ $2 \mathbf{I}_{\mathbf{1}}==\mathbf{\mathbf { V } _ { \mathbf { T } }}\left(\frac{4}{50+j 25}-\frac{1}{j 40}\right)$. It follows that $\frac{\mathbf{V}_{\mathbf{T}}}{\mathbf{I}_{\mathbf{T}}}=\left(\frac{1}{\frac{4}{50+j 25}-\frac{1}{j 40}}\right)=$ $\left(\frac{j 40(50+j 25)}{-50+j 135}\right)=15.44+j 1.69 \Omega$.

Figure P10.1.40

P10.2.5 Determine $L_{e q}$ in Figure P10.2.5.
Solution: It is seen from the current relations for the ideal transformer that $\mathbf{I} / 2=\left(\mathbf{I}_{\mathbf{T}}-\mathbf{I}\right)$, or $\mathbf{I}=2 \mathbf{I}_{\mathbf{T}} / 3$. From KVL for each of the two branches:
$j \omega 6 \mathbf{I}+j \omega 4.5\left(\mathbf{I}_{\mathbf{T}}-\mathbf{I}\right)+\mathbf{V}=\mathbf{V}_{\mathbf{T}}$ and
$j \omega 12\left(\mathbf{I}_{\mathbf{T}}-\mathbf{I}\right)+j \omega 4.5 \mathbf{I}-\mathbf{2 V}=\mathbf{V}_{\mathbf{T}}$
Eliminating \mathbf{V} and \mathbf{I} between these equations

Figure P10.2.5
gives $j \omega 6 I_{T}=V_{\mathbf{T}}$, so that $L_{e q}=V_{\mathbf{T}} / j \omega \mathbf{l}=6 \mathrm{H}$.

Figure P10.2.5-1

P10.2.7 Determine a in Figure P10.2.7 so that $Y_{\text {in }}=0$, assuming $\omega=1 \mathrm{Mrad} / \mathrm{s}$
Solution: The two coupled coils have $L_{e q}=$ $6+4-2 \times 3=4 \mu \mathrm{H}$, and an impedance of $j \omega L_{e q}=j 4 \Omega ; 1 / j \omega C=1 /\left(j 10^{6} \times 0.25 \times 10^{-6}\right)$ $=-j 4 \Omega$.

When a test source $\mathbf{V}_{\mathbf{T}}$ is applied, the test current $\mathrm{I}_{\mathbf{T}}$ should be zero. The voltage across $j \omega L_{e q}$ is $\left(\mathbf{V}_{\mathbf{T}}-a \mathbf{V}_{\mathbf{T}}\right)$, so that $\mathbf{I}=(1-a) \mathbf{V}_{\mathbf{T}} /(j 4)$.
From KCL at the upper node, $\mathbf{a l}=\mathbf{I}+$

Figure P10.2.7 $\mathbf{V}_{\mathbf{T}} /(-j 4)$, or $\mathbf{I}=\mathbf{V}_{\mathbf{T}} /[(j 4)(1-\mathrm{a})]$. Equating the two expressions of $\mathrm{I}: \frac{1-a}{j 4}=\frac{1}{j 4(1-a)}$, or, $(1-a)^{2}=1, a=1 \pm 1$, or $a=2$.

Figure P10.2.7-1

